Dynamical Borel-Cantelli lemmas for Gibbs measures

نویسنده

  • N. Chernov
چکیده

Let T : X 7→ X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsets An ⊂ X and μ-almost every point x ∈ X the inclusion Tnx ∈ An holds for infinitely many n. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find sufficient conditions on sequences of cylinders and rectangles, respectively, that ensure the dynamical Borel-Cantelli lemma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Borel-cantelli Lemma for Nonuniformly Expanding Dynamical Systems

Let (An)n=1 be a sequence of sets in a probability space (X,B, μ) such that P∞ n=1 μ(An) =∞. The classical Borel-Cantelli lemma states that if the sets An are independent, then μ({x ∈ X : x ∈ An for infinitely many values of n}) = 1. We present analogous dynamical Borel-Cantelli lemmas for certain sequences of sets (An) inX (including nested balls) for a class of deterministic dynamical systems...

متن کامل

Statistical Properties of Chaotic Dynamical Systems: Extreme Value Theory and Borel-cantelli Lemmas

In this thesis, we establish extreme value (EV) theory and dynamical BorelCantelli lemmas for a class of deterministic chaotic dynamical systems. We establish the distributional convergence (to the three classical extreme value distributions) of the scaled sequence of partial maxima of some time series arising from an observable on systems such as the planar dispersing billiards, Lozi-like maps...

متن کامل

The Dynamical Borel-cantelli Lemma for Interval Maps

Abstract. The dynamical Borel-Cantelli lemma for some interval maps is considered. For expanding maps whose derivative has bounded variation, any sequence of intervals satisfies the dynamical Borel-Cantelli lemma. If a map has an indifferent fixed point, then the dynamical Borel-Cantelli lemma does not hold even in the case that the map has a finite absolutely continuous invariant measure and s...

متن کامل

Annealed and Quenched Limit Theorems for Random Expanding Dynamical Systems

In this paper, we investigate annealed and quenched limit theorems for random expanding dynamical systems. Making use of functional analytic techniques and more probabilistic arguments with martingales, we prove annealed versions of a central limit theorem, a large deviation principle, a local limit theorem, and an almost sure central limit theorem. We also discuss the quenched central limit th...

متن کامل

1 3 A pr 2 00 8 THE DYNAMICAL BOREL - CANTELLI LEMMA AND THE WAITING TIME PROBLEMS

We investigate the connection between the dynamical Borel-Cantelli and waiting time results. We prove that if a system has the dynamical BorelCantelli property, then the time needed to enter for the first time in a sequence of small balls scales as the inverse of the measure of the balls. Conversely if we know the waiting time behavior of a system we can prove that certain sequences of decreasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999